Package: cito 1.1.1
cito: Building and Training Neural Networks
The 'cito' package provides a user-friendly interface for training and interpreting deep neural networks (DNN). 'cito' simplifies the fitting of DNNs by supporting the familiar formula syntax, hyperparameter tuning under cross-validation, and helps to detect and handle convergence problems. DNNs can be trained on CPU, GPU and MacOS GPUs. In addition, 'cito' has many downstream functionalities such as various explainable AI (xAI) metrics (e.g. variable importance, partial dependence plots, accumulated local effect plots, and effect estimates) to interpret trained DNNs. 'cito' optionally provides confidence intervals (and p-values) for all xAI metrics and predictions. At the same time, 'cito' is computationally efficient because it is based on the deep learning framework 'torch'. The 'torch' package is native to R, so no Python installation or other API is required for this package.
Authors:
cito_1.1.1.tar.gz
cito_1.1.1.zip(r-4.5)cito_1.1.1.zip(r-4.4)cito_1.1.1.zip(r-4.3)
cito_1.1.1.tgz(r-4.4-any)cito_1.1.1.tgz(r-4.3-any)
cito_1.1.1.tar.gz(r-4.5-noble)cito_1.1.1.tar.gz(r-4.4-noble)
cito_1.1.1.tgz(r-4.4-emscripten)cito_1.1.1.tgz(r-4.3-emscripten)
cito.pdf |cito.html✨
cito/json (API)
NEWS
# Install 'cito' in R: |
install.packages('cito', repos = c('https://citoverse.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/citoverse/cito/issues
machine-learningneural-network
Last updated 1 months agofrom:6d83920958. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 09 2024 |
R-4.5-win | WARNING | Nov 09 2024 |
R-4.5-linux | WARNING | Nov 09 2024 |
R-4.4-win | WARNING | Nov 09 2024 |
R-4.4-mac | WARNING | Nov 09 2024 |
R-4.3-win | WARNING | Nov 09 2024 |
R-4.3-mac | WARNING | Nov 09 2024 |
Exports:ALEanalyze_trainingavgPoolcnnconditionalEffectsconfig_lr_schedulerconfig_optimizerconfig_tuningcontinue_trainingconvcreate_architecturednnelinearmaxPoolmmnmultinomial_log_probPDPtransfertune
Dependencies:abindbackportsbitbit64bootcallrcheckmateclicorocrayondescellipsisfansifilelockfsgluegridExtragtablehmsjpegjsonlitelatticelifecyclelme4magrittrMASSMatrixminqanlmenloptrparabarpillarpkgconfigpngprettyunitsprocessxprogresspsR6rappdirsRcppRcppEigenrlangsafetensorstibbletorchtorchvisionutf8vctrswithr
Advanced: Custom loss functions and prediction intervals
Rendered fromD-Advanced_custom_loss_functions.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2024-03-05
Started: 2023-09-29
Example: (Multi-) Species distribution models with cito
Rendered fromC-Example_Species_distribution_modeling.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2024-03-18
Started: 2023-09-29
Introduction to cito
Rendered fromA-Introduction_to_cito.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2024-03-16
Started: 2023-09-29
Training neural networks
Rendered fromB-Training_neural_networks.Rmd
usingknitr::rmarkdown
on Nov 09 2024.Last update: 2024-03-06
Started: 2023-09-29